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DARPA Scientific Progress Report, 2014 
We seek to predict the mechanical properties of human tissue from atomistic simulations and 
microrheological experiments. The most prevalent protein in the body is also one that determines much of 
its mechanical properties: collagen.  Collagen is a multiscale material, so requires multiscale modeling for 
predictions.  It consists of long proteins that form a triple helix.  The triple helices stack to form fibrils of a 
few hundred nanometers in diameter.  In turn, these fibrils then bind to form fibers that have the important 
mechanical strength.   We show that the modulus of the triple helix and fibrils are very similar, but that the 
fibers have much lower modulus.  Hence, we postulate that the inter-fibril cross-linking is significantly softer 
than collagen.   Details are in the submitted manuscript Nanomechanics of type I collagen fibrils, and only a 
brief summary is given below. 

Our overall strategy is the following steps.  Co-principal investigator Joseph Orgel has performed x-ray 
diffraction to determine the atomistic structure of the stacking in the fibrils.  These structures are then fed 
into an atomistic molecular dynamics simulation.  Many of the force fields between atoms are determined 
from ab initio quantum mechanical calculations, and these are then used to determine the stresses in the 
fibril material as function of strain.  The simulations use periodic boundary conditions to assume that the 
fibrils are infinitely large.  The results of the simulation are used to determine parameters in a linear elastic 
rod model.  These predictions are compared to single-fiber mechanical measurements performed using 
optical tweezers (see manuscript “Measurement of elastic modulus of collagen Type I single fiber”).   Finally, 
microrheology is performed on gels made of collagen.  Most details are given in previous reports, published 
papers and proceedings, all of which are included elsewhere in the report.  In the following sections we 
focus here on what is new and not in those other publications. 

We also examine the properties of oriented and unoriented gels.  We have developed techniques to  
quantify the anisotropy of the gel, whose structure was created by periodic deformations during 
crosslinking.  We also show that two-point microrheology can be used to measure the modulus of gels 
whose microstructure is larger than bead size.   These details are given below. 

Molecular dynamics simulation 
Collagen is the primary constituent of animal connective tissue. A defining feature of fibrillar collagen is its 
axial periodicity visible in transmission electron microscopy as alternating dark and light bands. The 
repeating unit, D, is 67 nm long, with the dark band making up 54% of the repeating length. This periodicity 
of dark/light bands reflects an underlying packing of constituent triple-helix polypeptide monomers wherein 
the dark bands represent gaps between axially adjacent monomers. This organization of gap/overlap 
regions is present in the microfibrillar model of collagen obtained from fiber diffraction at 55 Angstrom 
resolution.  

Recent molecular dynamics simulations of this model under zero-stress conditions, however, predict that 
the D-band shrinks by 19% [1]. Consequently, the mechanical properties obtained from this study 
correspond to those of distorted microfibrils. Here we evaluate systematically the effect of several physical 
parameters on D-band shrinking. Using the force field employed in the reported study, we find that, 
irrespective of the temperature/pressure coupling algorithms, assumed salt concentration or hydration 
level, and whether or not the monomers are cross-linked, the D-band shrinks considerably. This shrinkage 
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results not from the sliding of axially parallel monomers across one another, but rather it is associated with 
bending and widening of individual monomers. The distributions of backbone dihedrals are also different 
from those in the fiber diffraction model.  

Employing a force field whose backbone dihedral energy landscape matches more closely with CCSD(T) 
theory results in a small D-band shrinking of <3%. Since this force field is also known to perform better 
against other experimental structural data, it appears that the large shrinkage observed in earlier 
simulations is a force-field artifact. However, certain atomic-level details, like glycosylation sites, which are 
indiscernible from the electron densities of collagen and collagen-related peptides, still remain to be 
incorporated into the atomically detailed model of collagen. It is, therefore, plausible that their inclusion 
might prevent large force-field-dependent variations in D-band length. Consequently, we cannot yet 
completely rule out D-band shrinking to be an artifact of model construction.  

Fibrils of type I collagen assemble from polypeptide triple helices. Higher-order structures, such as fibril-
bundles and fibers, assemble from fibrils in the presence of other collagenous and non-collagenous 
molecules. A compilation of results from several different experiments indicates that the Young's moduli of 
fibrils/fibril-bundles are an order in magnitude smaller than those of triple helices, indicating that 
fibrils/fiber-bundles are less resistant to axial deformation compared to triple helices. To understand the 
molecular basis for this difference, we carry out all-atom molecular dynamics simulations of the smallest 
repeating crystallographic unit of a fibril under periodic boundary conditions. This system is structurally 
equivalent to an infinite microfibril. Assuming that linear response theory applies to axial strains smaller 
than 5%, we find that the stress-strain relationship yields a Young's modulus of 2.34 GPa, which is within the 
range estimated for triple helices. This similar magnitude in modulus suggests that the smaller resistance of 
collagen fibrils/fiber-bundles to axial deformation does not stem from the packing of polypeptide triple 
helices in a microfibril. Instead, it stems from the assembly of microfibrils into finite-sized fibrils and/or the 
assembly of fibrils into fibril-bundles. 

Anisotropic mechanical response of oriented collagen gels 
Tissue and tissue scaffolding made from collagen is usually oriented, rather than isotropic.  The cells 

appear to be sensitive to their anisotropic mechanical properties, which we seek here to quantify.  Towards 
this end, we use microrheology to examine the anisotropic fluctuations of Brownian beads embedded in 
networks that are formed under flow.  To impose the flow, we designed and built a small device that could 
induce flow inside our commercial device for bead tracking and manipulation. 

The JPK NanoTracker [2] was used to record thermal fluctuations of 2 µm polystyrene beads 
(Polybead Polystyrene Microspheres, mean diameter 2.0 µm, standard deviation ±5 %, Polysciences, Inc., 
Warrington, PA), embedded into 1 mg/ml self-assembled rat tale type I collagen network (Corning® 
Collagen I, Rat Tail, Cornong Inc., Corning, NY)  

To create anisotropy in the sample we used a custom-built device to produce a large amplitude 
oscillatory shear (LAOS) flow in the sample chamber during the gelation process (Figure 1). The sample (7-8 
μl) was placed between microscope coverslips (18x18 mm and 24x55 mm, No1, Thermo Fisher Scientific, 
Fermont, CA) (Figure 2). The top coverslip was repeatedly moved by a linear motor (PiezoMotor Piezo LEGS® 
Linear 6N) with an amplitude of 100 μm and maximum speed 10 μm/s during the first 3 hours of 
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fibrogenesis. To avoid a complicated secondary flow pattern during the shear deformation, only a small 

rectangular portion of the sample chamber was actually filled with the sample (Figure 3).  

Figure 1 Render of shear chamber. 

Figure 2 Shear chamber cross-section 

Figure 3 Shear chamber top view (Sizes in mm) 

Microrheological experiments were performed as follows. The collagen gel was injected into the 
sample chamber and left for 3 hours under LAOS flow. An optical trap was focused on the desired bead and 
calibrated. After that, data of the bead position was collected simultaneously for X and Y channels at the 
rate of 100 kHz for 60 seconds. Calibration and data collection steps were repeated for 5-10 different beads. 
The sample chamber was turned 90° counterclockwise and the whole process of the calibration and the 
data collection was repeated for exactly the same beads. The last step is important for a reproducibility 
check and for evenly distributing all the internal and external noise sources among X and Y channels. 

 

Results and Discussion 
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There are two competitive processes occurring in the sample during LAOS. One process is the 
orientation of fibers along the direction of the shear as described by [3]. The other process caused by LAOS 
is weakening of the network in the flow direction [4]. As described in [4], the weakening occurs in a mature 
network due to destruction of cross-linking bounds between fibers. The effect was shown for relatively 
small oscillatory strains (0.02 – 0.2) and large step strain (0.7) followed by long relaxation time (tens of 
minutes). However, during fibrogenesis we noticed that cross-links are easily reformed due to the presence 
of proteoglycans and therefore the fibers are just orient in the direction of LAOS flow (direction along y  

axis on Figure 4, b). 

Figure 4 Unoriented (a) and oriented (b) collagen networks. For the oriented network (b), the x axis 
is vorticity direction and the y axis is flow direction.  

Observing fibrogenesis under LAOS in real time, we were able to see how newly formed fibers 
become oriented in the flow direction ( y  on Figure 4, b) and then bonded to the existing network. 

Moreover, fibers aggregate in some regions leaving other regions empty. For example, the left side of Figure 
4, b is empty of fibers while the middle and right sides contain oriented fiber bundles which are visibly more 
dense than the unoriented network Figure 4, a.  

The mean-square displacement (MSD) of the particle positions on two perpendicular axes (x and y, 
Figure 4) was calculated for 8 different particles embedded in unoriented (Figure 5 and Figure 6) and 
oriented (Figure 7 and Figure 8) collagen networks. 

One notices significant variance between the MSDs for different particles for both x and y channels. 
Such variance was reported before [5] and is probably caused by the slight inhomogeneity within the 
formed fiber bundle (right side of Figure 4, b). To avoid inhomogeneity one can try increasing the collagen 

x 

y 

x 

y 
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concentration. However, higher collagen concentration will lead to significant stiffening of the network, 
which in turn decreases the amplitude of the particle motion, possibly to the resolution limit. The latter 
might be especially important for the oriented networks, which tend to already have higher local collagen 
concentrations due to the formation of aggregates (bundles). 

Comparing MSD plots for x and y channels, one sees that, despite the variation between different 
particles, the plots look similar. To further analyze the difference between x and y displacements, we plot 
their relation in Figure 9. For an ideal isotropic network MSD x/MSD y should always equal 1. However, even 
for our unoriented 1 mg/ml collagen gel there are some deviations from 1. That could be explained by the 

small concentration of fibers in the gel. Another feature of Figure 9 is that the quantity 0

MSD 1
MSD t

x
y →→  , 

which can be explained increased contribution of inertia of the particle and the buffer at high frequencies.  

To quantify the anisotropy of the sample, we calculate the average and the standard deviation of 
MSD x/MSD y for different particles at a lag time of 0.1 s which turned out to be 1.49±0.83. 

Analyzing MSD plots for the oriented network (Figure 7 and Figure 8), one sees that MSDs for the 
oriented network is generally smaller than for unoriented. This is consistent with the oriented network 
having higher local collagen concentrations, as was discussed earlier.  

Another feature is that plots of MSD y (which correspond to fluctuation of particles along the 
preferred fiber orientation in bundle on Figure 4, b) for different particles are generally below plots of MSD 
x for same particles (which correspond to fluctuation of particles perpendicular to the preferred fiber 
orientation in the bundle on Figure 4, b). This appears to be an effect of anisotropy in the fiber bundles as 
motion is more restricted in the direction y on Figure 4.  

Lastly, a significant amount of noise appears in both Figure 7 and Figure 8. This noise has a distinct 
spectral signature and is believed to be a result of external vibrations. We took serious efforts in reducing 
the noise propagated to the samples, but we were only able to reduce it below 10-17 m2. 

To quantify the anisotropy of the oriented sample, we again calculate the average and the standard 
deviation of MSD x/MSD y for different particles at the lag time of 0.1 s which turned out to be 3.33±1.26, a 
clear quantification of anisotropy in the sample.  
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Figure 5 Mean-square displacement along the x axis of the chamber for 8 different particles (P1-P8) 

embedded into non-oriented collagen network.  

Figure 6 Mean-square displacement along the y axis of the chamber for 8 different particles (P1-P8) 
embedded into non-oriented collagen network. 
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Figure 7 Mean-square displacement along the x axis of the chamber for 8 different particles (P1-P8) 
embedded into oriented collagen network. 

Figure 8 Mean-square displacement along the y axis of the chamber for 8 different particles (P1-P8) 
embedded into oriented collagen network. 
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Figure 9 Relation between MSD for x and y displacements (MSD x /MSD y) for 8 different particles 

(P1-P8) embedded into non-oriented collagen network. 

Figure 10 Relation between MSD for x and y displacements (MSD x /MSD y) for 8 different particles 
(P1-P8) embedded into oriented collagen network. 

Two-bead microrheology 
We have also developed detailed methods for analyzing the results of two-bead microrheology[6]. Roughly 
speaking, one measures the cross-correlations of the Brownian motion of two beads that interact 
hydrodynamically in a viscoelastic medium. In single-point microrheology, a single bead is followed, but the 
bead must be larger than the microstructure of the medium. If the bead is too large, it is not sufficiently 
subject to Brownian motion, and no signal can be detected. Two-point microrheology overcomes these 
limitations by using beads that are small enough to experience Brownian forces, but significantly separated 
to sample the microstructure as a continuum. 
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Prior analysis neglected two effects: the finite time for waves to travel between the two particles, and the 
fact that a single wave can bounce between the two particles more than once. We have included these 
effects and designed an analysis that is no more complicated than the traditional approach [7], [8]. We 

apply those analyses here to our own data in a prototype polymer solution, as shown in Figure 11. 

Figure 11 Mean-squared displacement, and cross-correlations in two-bead microrheology. The 
material is 2% PAM(polyacrylamide) dissolved in water. The beads have radius 0.765R mµ=  and are 

separated by 4R . The solid lines are a fit used to convert these data from the time domain to the frequency 
domain. 

These data are then used to estimate the dynamic modulus of the polymer solution and compared to the 
same quantity measured in a mechanical rheometer. The results are shown in Figure 12. 
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Figure 12 Dynamic modulus measured by a mechanical rheometer in parallel plates (Macrorheology), and 
that measured using single and two-point microbead rheology. 

Semiflexible fiber mechanics 
Further coarse graining requires statistical mechanics.  Here we model the fibers as fluctuating elastic fibers 
with uniform Young's modulus, the so-called "wormlike chain" [9]. Great strides were recently made in 
these derivations and calculations by Spakowitz and coworkers [10]. In order to build mathematical model 
of networks of these strands, we require the free energy of a strand which interacts with other strands 
through topological constraints and cross-links.  Between these constraints, the strands are relatively free to 
fluctuate from Brownian forces.  However, the strand orientations at these constraints must be continuous, 
which couples the free energy of two adjacent chain segments.  

Using the approach taken by Koslover and Spakowitz [11], we found the Green's function (equivalent to the 
free energy) of two strands with fixed length ( L  ), fixed end-to-end vector ( Q ), and prescribed orientation 

at their junction ( u ) 
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where the Y  are spherical harmonics, the j  are spherical Bessel functions, and the 0,0
nG  are continued 

fractions. 

As an example, we consider the buckling of this strand compared to the prediction of Euler buckling, which 
does not include fluctuations. Schematic representation of the buckled chain and notations are shown in 
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Figure 13. Figure 14 shows the critical force required for buckling relative to the Euler prediction. The result 
shows that fluctuations actually stabilize the fiber. It appears that for short chains, the critical force scales 
linearly. 

Figure 13 Schematic representation of the chain modeled as 2 equal strands. 

Figure 14 Critical buckling force vs contour length of the chain 

We also looked at the distribution of the tangent orientation u  at the middle of the buckled strand. 
Examples of this distribution are shown in Figure 15, Figure 16 and Figure 17. 

For 10% compression ( / 0.9R L = ) the chain is almost straight and the distribution is sharply peaked at the 
direction of the end-to-end vector, allowing only small isotropic fluctuation around it (Figure 15). For 50% 
compression the orientation of the middle point goes out of the plain, indicating that chain configurations 
can become helical (Figure 16). This suggests that 2D models would not be sufficient to describe buckling of 
semiflexible fibers, and shows the importance of fluctuations. 
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Figure 15 Distribution of orientation angle for the middle point on the chain / 2 2pL l =  , 

/ 0.9R L =  ( max / 0.06a L =  ). Color map is the same for all a   

Figure 16 Distribution of orientation angle for the middle point on the chain / 2 2pL l = , 

/ 0.5R L =  ( max / 0.3a L = ). Color map is the same for all a . 

Figure 17 Distribution of orientation angle for the middle point on the chain / 2 2pL l = , 

/ 0.1R L =  ( max / 0.33a L = ). Color map is the same for all a . 

The free energies are then suitable for building multi-chain or single-chain mean-field models of entangled 
cross-linked semi-flexible networks, such as those that make up tissue. 
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